Skip to content

New Hyper-Reality Experiences By The VOID Coming Fall 2018 – Ralph Breaks VR

first_imgShare This!For those who have experienced The VOID’s first foray paired with Disney, Star Wars: Secrets of the Empire, which is available for Guests to experience at both Downtown Disney and Disney Springs, you know what an amazing experience it truly is. Soon, Guests will be able to step into another immersive world and I could not be more excited!Coming this fall, Guests will soon be able to experience a brand new multi-sensory Disney adventure where you’ll be immersed in the worlds of the internet and online gaming with Wreck-It Ralph and Vanellope, with Ralph Breaks VR! To create Ralph Breaks VR, The Walt Disney Company and ILMxLAB are again collaborating with the team at The VOID.This appears to be the first of several new collaborations with The VOID coming soon.  They are slated to develop five new experiences based on material from Walt Disney Animation Studios and Marvel Studios and this is the first of the five.“Very fundamentally we ask ourselves what are places people have always wanted to step into and be a part of, but were never possible before,” says Curtis Hickman, The Void’s founder and chief creative officer. “Disney and Marvel have a lot of worlds that people want to step into that work well with our technology.”There is no word on where the Ralph Breaks VR will be located, nor do we know exactly when it will open, but stay tuned to the blog for more information, not only about this project, but the other ones that are clearly on their way in the future too.last_img read more

A tale of two seasons

first_imgMarshfield baseball turns it on down the stretchBy Paul LeckerSports ReporterMARSHFIELD — Entering the month of May, the Marshfield baseball team was just 4-5 overall, had lost all four of its Wisconsin Valley Conference games, and was left wondering where its offense had gone.The Tigers scored just two runs over a three-game span, which concluded with a loss in the opening game of a doubleheader on May 2 against Middleton.The team’s fortunes changed in the second game of that twinbill. A bases-loaded, walk-off single by Sam Klein in the bottom of the seventh inning gave Marshfield a 5-4 victory. Even more importantly, it gave the Tigers confidence.Since, Marshfield has gone 10-1, including eight wins in a row heading into Thursday’s doubleheader against Wausau East.“It seems like the kids are just coming together,” Marshfield coach Mark Zee said. “They don’t care about who gets the credit, who has the big hit. They have just decided to put it all together to be successful as a team.”Zee added that the Tigers are having fun playing a game they love, and they should be after what they have put together over the last three weeks.Another walk-off win, on a hit by Matt Meyer in the second game of a doubleheader against New Richmond on May 10, started the win streak.In the next game, Marshfield scored nine times in the top of the seventh inning to beat Merrill 12-8 and followed that up with a 10-0 whitewashing of the Bluejays at home two days later.On May 16 the Tigers opened their home tournament with another walk-off win, this time beating Menomonie 9-8 on an RBI sacrifice fly by Cameron Swanson in the ninth inning.The Tigers have scored 61 runs during their eight-game winning streak, which includes six in a row in the Valley, moving them from last place into second.“I think it started playing a lot of (nonconference) games on those weekends,” Zee said. “Usually what happens is you get to see some less experienced pitching in those games. We got some good pitching from our group and took advantage of that to win some games. It was good to get our confidence going, and it paid off in our hitting and our pitching.”Sophomore Jake Brueggen was one of the pitchers who got a chance to throw in a nonconference game early in the season out of necessity. He defeated Eau Claire North 6-2 back on the opening weekend of the season, and after giving up just one run in six innings against Tomah a couple of weeks later, he found himself in the rotation for good. He is 5-1 with a 2.51 ERA.Senior Jack Donahue is the team’s other main starter, and after some early-season struggles he has turned in 12-straight scoreless innings in his last two starts.“We’ve said that decent pitching and good defense keeps you close and gives you a chance if you can hit,” Zee said. “The top six in the batting order are all seniors except Trevor Schwecke, but he is a two-year starter. We knew the guys behind them were good hitters too, and now everybody is hitting. Everybody is having fun.”Marshfield closes its regular-season schedule at Mosinee on Friday.Marshfield earned a No. 3 seed in the Division 1 Sectional 1 bracket and received a first-round bye. The Tigers (15-7) will host the winner of No. 11 New Richmond (11-10) and No. 6 Chippewa Falls (12-7) in a regional final on Thursday, June 4, at Jack Hackman Field at 5 p.m.Paul Lecker is publisher of, a contributor to Hub City Times Sports. You can reach him by email at [email protected]last_img read more

‘Molecular microscope’ finds hidden AIDS virus in the body

first_imgResearchers have developed a sophisticated new probe that detects HIV’s hiding places inside and outside of cells. “It’s a fantastic new technique that’s going to allow us to visualize the virus in tissues like we’ve never been able to before,” says immunologist Richard Koup, deputy director of the Vaccine Research Center at the National Institute of Allergy and Infectious Diseases (NIAID) in Bethesda, Maryland, who was not involved in the research. Insights from this high-powered molecular microscope, revealed at an international AIDS conference last week, may clarify critical questions about HIV persistence and, ultimately, about how to rid the body of the virus.To date, assessments of HIV in tissue—known as in situ analysis—have been hampered by one major difficulty. The most common probes, which use fluorescent markers or radioactive labels to pinpoint the virus’s location in a tissue sample, sometimes have difficulty distinguishing the target—HIV RNA and DNA—from surrounding cellular components. In essence, a marker can mislabel cell tissue as the virus, creating background noise that throws off the analysis. The new technique has “very little noise,” says immunologist Jake Estes of the Frederick National Laboratory of the National Cancer Institute (a sister of NIAID) in Frederick, Maryland, who used it to produce highly detailed images of the AIDS virus in various monkey tissues (above) that he presented at the conference.Estes developed the technique in collaboration with Advanced Cell Diagnostics of Hayward, California, by modifying the company’s already existing RNAscope product to detect HIV RNA, DNA or both at the same time. RNA and DNA are made of nucleotides that pair with a complement—guanine, for example, binds to cytosine. Traditional methods for mapping HIV genetic material use long strings of these nucleotides, called oligomers, to find and bind to complementary strands of DNA or RNA in sample tissues. These oligomers are labeled with a marker so they send a signal when they hit their target, allowing researchers to create an image of precisely where the viral genetic material is dispersed throughout the tissue sample. But oligomers are large and somewhat clumsy molecules, and they occasionally bind to cellular components other than the target sequence.Sign up for our daily newsletterGet more great content like this delivered right to you!Country *AfghanistanAland IslandsAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua and BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBolivia, Plurinational State ofBonaire, Sint Eustatius and SabaBosnia and HerzegovinaBotswanaBouvet IslandBrazilBritish Indian Ocean TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral African RepublicChadChileChinaChristmas IslandCocos (Keeling) IslandsColombiaComorosCongoCongo, The Democratic Republic of theCook IslandsCosta RicaCote D’IvoireCroatiaCubaCuraçaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland Islands (Malvinas)Faroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Southern TerritoriesGabonGambiaGeorgiaGermanyGhanaGibraltarGreeceGreenlandGrenadaGuadeloupeGuatemalaGuernseyGuineaGuinea-BissauGuyanaHaitiHeard Island and Mcdonald IslandsHoly See (Vatican City State)HondurasHong KongHungaryIcelandIndiaIndonesiaIran, Islamic Republic ofIraqIrelandIsle of ManIsraelItalyJamaicaJapanJerseyJordanKazakhstanKenyaKiribatiKorea, Democratic People’s Republic ofKorea, Republic ofKuwaitKyrgyzstanLao People’s Democratic RepublicLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacaoMacedonia, The Former Yugoslav Republic ofMadagascarMalawiMalaysiaMaldivesMaliMaltaMartiniqueMauritaniaMauritiusMayotteMexicoMoldova, Republic ofMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorwayOmanPakistanPalestinianPanamaPapua New GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarReunionRomaniaRussian FederationRWANDASaint Barthélemy Saint Helena, Ascension and Tristan da CunhaSaint Kitts and NevisSaint LuciaSaint Martin (French part)Saint Pierre and MiquelonSaint Vincent and the GrenadinesSamoaSan MarinoSao Tome and PrincipeSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSint Maarten (Dutch part)SlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Georgia and the South Sandwich IslandsSouth SudanSpainSri LankaSudanSurinameSvalbard and Jan MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwanTajikistanTanzania, United Republic ofThailandTimor-LesteTogoTokelauTongaTrinidad and TobagoTunisiaTurkeyTurkmenistanTurks and Caicos IslandsTuvaluUgandaUkraineUnited Arab EmiratesUnited KingdomUnited StatesUruguayUzbekistanVanuatuVenezuela, Bolivarian Republic ofVietnamVirgin Islands, BritishWallis and FutunaWestern SaharaYemenZambiaZimbabweI also wish to receive emails from AAAS/Science and Science advertisers, including information on products, services and special offers which may include but are not limited to news, careers information & upcoming events.Required fields are included by an asterisk(*)Estes’s new technique, in contrast, uses a more complex probe system that all but eliminates those kinds of errors. In essence, the approach chops an oligomer in two and sends both halves out to find the target sequence. Their markers light up if an additional oligomer that bridges the two halves binds to both, which only occurs when they park next door to each other on the target. The probability is extremely low that the two probes would land next to each other on anything other than HIV.HIV is an RNA virus, but it also converts to a DNA form that allows it to weave its genes into a human chromosome. Estes, who works with virologist Jeffrey Lifson, has also developed a DNAscope to visualize this HIV DNA—called the provirus—which becomes integrated into human cells and can persist for decades without being attacked by the immune system or antiretroviral (ARV) drugs. “Reservoirs” of infected cells that hold latent provirus are a key reason why powerful combinations of ARVs cannot eliminate infections and cure people.Estes, Lifson, and co-workers infected monkeys with the simian version of the AIDS virus and then analyzed tissues from many parts of their bodies. Their RNAscope and DNAscope were able to distinguish cells that harbor the provirus, viral RNA, or even viruses outside of cells much more clearly than any previous in situ technique. “We’re convinced that we can see individual virions and that this has exquisite sensitivity and specificity,” Estes says. To double check their work, they counted HIV virions by eye in one of their new images, and then compared their count to a validated measure of viral levels. “We see a beautiful correlation,” Estes says.HIV/AIDS researchers working to cure the infection face several obstacles that these new scopes could help overcome. One is the lack of detectable virus in the blood plasma of patients on effective ARV therapy, which makes it difficult for researchers to assess whether an intervention aimed at curing the infection is working. Several techniques exist to measure changes in reservoirs, but each has shortcomings that the new scopes might be able to supplement. Another obstacle is not knowing precisely where in the body the provirus prefers to hide. If the new probes can help solve this longstanding riddle, they could refine attempts to shrink viral reservoirs. “If we can go in and see what happens to the virus in these different tissues with this sort of sensitivity and specificity, it’s going to answer a lot of questions,” NIAID’s Koup says.last_img read more